
Generalized Heisenberg algebra: application to the harmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 7619

(http://iopscience.iop.org/1751-8121/40/27/012)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/27
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 7619–7632 doi:10.1088/1751-8113/40/27/012

Generalized Heisenberg algebra: application to the
harmonic oscillator

M N Hounkonnou and E B Ngompe Nkouankam

International Chair of Mathematical Physics and Applications (ICMPA–UNESCO Chair),
072 BP: 50 Cotonou, Republic of Benin

E-mail: norbert hounkonnou@cipma.net and hounkonnou@yahoo.fr

Received 29 December 2006, in final form 14 May 2007
Published 20 June 2007
Online at stacks.iop.org/JPhysA/40/7619

Abstract
The deformed Poisson algebra recently introduced to investigate integrable
systems (2003 J. Phys. A: Math. Gen. 36 12181–203, 2005 J. Math. Phys. 46
042702) is used to perform the transition from the phase space of classical
observables (functions depending on positions and momentums) to the Hilbert
space of physically well-defined Hermitian operators. A Hamiltonian operator
for the harmonic oscillator system is constructed and the eigenvalue problem
is solved. The generalization to an n-dimensional space shows that such an
algebra does not break the rotational symmetry.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Ge, 02.30.Sa

1. Introduction

Generalizations of the HA, also called deformed Heisenberg algebras, continue to be under a
thorough and versatile scrutiny in mathematics and physics [1–11] (and references therein).
The concept was first developed by Snyder [2] about 20 years after Heisenberg and Schrödinger
invented quantum mechanics around 1925 and Heisenberg discovered the uncertainty relation
in 1927. The problem was considered as small additions to the canonical commutation
relations. In [2], such an issue was raised in connection with the idea of quantization of the
phase space. As mentioned above, all these exciting activities are motivated by fundamental
as well as practical considerations. Accordingly, a number of suggestions have been made
since the earlier work of Snyder [2]. As a matter of citation, let us just mention q- or (p, q)-
deformed HA and their variants, which are relevant in q- or (p, q)-deformed phase spaces.
See [8, 12–15] for more details.

The question of deformation of the HA is also approached along purely practical lines
when solving eigenvalue problems [1]. For instance, when we have a Hamiltonian in the
Schrödinger equation with a potential which does not allow exact analytical solutions to be
obtained, one usually reduces it to a familiar form using generalized position and momentum
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operators which fail to satisfy the HA. The permutation relations between these operators are
the so-called deformed relations. By this procedure, we transfer the ‘pathological’ form of the
Hamiltonian into a deformation of HA.

The generalized HA is also induced from a classical mechanics generalization. In this
direction, one of the most successful results on the extension of symplectic mechanics is
certainly the Nambu proposal [9] as a generalization of Hamiltonian mechanics by considering
brackets involving n � 3 functions. The quantization of these brackets has been discussed in
the framework of deformation quantization [16]. However, despite the elegance and beauty of
Nambu mechanics, it turns out to be somewhat restrictive with many basic problems waiting
to be solved when the quantization procedure is applied [10, 11].

Instead of considering a multilinear object, namely the Nambu bracket, which yields
a generalization of the Hamiltonian, the aim of this work is to provide a straightforward
generalization of HA induced by a bilinear generalized Poisson bracket which has received
considerable attention in deformation theories in the last years [17, 18] (and references
therein). Such a deformed Poisson bracket has been successfully used to investigate dynamical
systems with concrete applications to the Boussineq system as well as to Kaup–Bœ r and
Toda systems. Three field and dispersionless systems as well as field soliton and lattice
soliton systems have been also examined. The investigations performed by these authors
[17] reveal that the number of constructed dispersionless systems is much greater than the
number of known soliton systems (dispersive integrable systems). The authors answered
to the question whether for any dispersionless Lax hierarchy one can construct a related
soliton hierarchy, via a procedure of Weyl–Moyal-like deformation quantization for Poisson
algebras of dispersionless systems and appropriate R-matrix theory. They succeeded in finding
a unified procedure for the construction of field and lattice Hamiltonian soliton systems in
one scheme. Notwithstanding these results relevant for the analysis of integrable systems
and the great interest triggered by this bracket in physical applications, to our best knowledge
of the literature, a systematic study of its quantization in view of performing the transition from
the phase space of classical observables (functions depending on positions and momentums)
to the Hilbert space of quantum observables (operators) is still lacking. This paper, in the
first part, also fills in this gap, performing a thorough study of associated position and
momentum operators, as well as their functional analytic properties, which remain essential
to giving as complete and rigourous description as possible of the quantum configuration and
momentum spaces. It is worth mentioning that these latter operators yield a generalization
of quantum observables such as Hamiltonians of physical systems. The ultimate goal of
the second part is to present an exhaustive illustration of such well-defined tools in the
interesting case of the harmonic oscillator, which is central to the construction of a number
of models in various domains of physics (atomic and condensed matter physics, optics,
etc).

The paper is organized as follows. In section 2, we introduce the generalized HA and
provide the corresponding representation theory. In section 3, we give an application to the
harmonic oscillator. The eigenvalues and eigenfunctions of the deformed Hamiltonian are
carried out. Section 4 is devoted to a generalization to n-dimensional spaces. Finally, the
paper ends with some concluding remarks in section 5.

2. Generalized Heisenberg algebra

For the convenience of the development, we first briefly recall the classical definition of a two-
Poisson manifold, which is a two-dimensional Euclidian space R

2 generated by the position
and momentum variables q ≡ x1 and p ≡ x2 and equipped with a Poisson bracket (PB).
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By introducing f (q, p) and g(q, p), two arbitrary smooth functions, the PB is defined as

{f, g} =
(

∂f

∂q

∂g

∂p
− ∂g

∂q

∂f

∂p

)
. (1)

Equation (1) can be expressed in the compact form

{f, g} = ∂if J ij ∂jg, (2)

where J ij are the entries of the unitary simplectic matrix J given by

J =
(

0 1
−1 0

)
. (3)

Equation (2) does not change under the action of a symplectic transformation Sp(1) on
the phase space. As is well known, (2) can also be expressed as

{f, g} = {xi, xj }∂if ∂jg, (4)

so that, if we know the PB between the generators xi , we can compute the PB between any
pair of functions f and g.

Let us rapidly recall here that, introducing a q0-PB and requiring that it must be invariant
under the action of the q0-symplectic group Spq0(1), we are lead to the following q0-generators
x̂i [19]:

{x̂i , x̂j }q0 = ∂̂q x̂
i ∂̂px̂j − q2

0 ∂̂px̂i ∂̂q x̂
j . (5)

It is easy to verify the following fundamental relations:

{q̂, q̂}q0 = {p̂, p̂}q0 = 0 (6)

{q̂, p̂}q0 = 1 (7)

{p̂, q̂}q0 = −q2
0 , (8)

which coincide with the one obtained in [23]. In particular, from (7) and (8) it follows that the
q0-PB is not antisymmetric. A similar behaviour also appears in quantum q0-oscillator theory
[21, 22].

In the same vein and to preserve some consistency in the deformation of the symplectic
structure of the phase space, let us now consider a classical mechanical system described by
a generalized Poisson bracket involving a parameter r (instead of q0) and defined by [17]

{f, g}rPB = pr

(
∂f

∂q

∂g

∂p
− ∂g

∂q

∂f

∂p

)
, (9)

where r ∈ N. Indeed, one can readily check that (9) is bilinear, antisymmetric and verifies the
Leibnitz identity as well as the Jacobi identity. The latter identity can be proved as follows.
Let f, g and h be three arbitrary smooth functions. Then, the relation

{{f, g}rPB, h
}r

PB = p2r

(
∂2f

∂q2

∂g

∂p

∂h

∂p
− ∂f

∂p

∂2g

∂q2

∂h

∂p

)
+ p2r

(
∂f

∂q

∂2g

∂q∂p

∂h

∂p
− ∂2f

∂q∂p

∂g

∂q

∂h

∂p

)

− rp2r−1

(
∂f

∂q

∂g

∂p

∂h

∂q
− ∂f

∂p

∂g

∂q

∂h

∂q

)
− p2r

(
∂2f

∂q∂p

∂g

∂p

∂h

∂q
− ∂f

∂p

∂2g

∂q∂p

∂h

∂q

)

−p2r

(
∂f

∂q

∂2g

∂p2

∂h

∂q
− ∂2f

∂p2

∂g

∂q

∂h

∂q

)
(10)

can be cyclically manipulated to yield{{f, g}rPB, h
}r

PB +
{{g, h}rPB, f

}r

PB +
{{h, f }rPB, g

}r

PB = 0. (11)
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From (9), we obtain

{q, p}rPB = pr. (12)

The case r = 0 yields the standard Poisson bracket (1).
The deformed Poisson bracket (9) has become the focus of increasing interest. Indeed, in

[17], Blaszak et al applied a Weyl–Moyal-like deformation to a systematic construction of the
field and lattice integrable soliton systems from Poisson algebras of dispersionless systems,
endowed with (9). More recently [18], the same bracket has been used by Szablikowski et al
to study deformations of standard R-matrices for integrable infinite-dimensional systems.

In the following, we aim at building operators Q and P, quantum counterparts of q and
p, respectively, such that a quantum algebra corresponding to (12) and generalizing the usual
Heisenberg algebra can be written as

[Q,P ] = iνrP
r, (13)

where νr is a formal parameter with dimension [νr ] = [h̄]1−r [L]r , where [L] is the unit of
length and h̄ = h/(2π), h being the Planck constant.

The main difference between using (12) instead of (5) and its other variants comes from
the fact that the latter, involving the parameter q0, is no longer a Poisson bracket, and therefore
the following quantization rule (which we suppose at least to be satisfied),

1

iα
[Qf ,Qg] = Q{f,g}q0

(14)

(α being a parameter and Qf , the quantum counterpart of f ), cannot be applied to it. Contrarily,
one can readily check that (13) used in this work well satisfies (14) for the generators, replacing
the right-hand bracket by (9) and α by νr . Besides, as a general feature, the parameter q0, in
all the above-mentioned q0-deformed models, acts as a multiplicative factor in the classical
(see for instance (5)) as well as in the quantum description, while in the r deformation given
in (12), the parameter r behaves as a simple power in classical mechanics, and as the order of
differential operators in the quantum configuration space.

2.1. Position and momentum operators

To satisfy the criteria of the existence of a complete system of (generalized) eigenfunctions,
which is fundamental for the physical interpretation of observables, one requires the operators
Q and P to be Hermitian [20] (and references therein).

We first consider the configuration space {|q〉} and the space of smooth complex valued
functions with compact support, C∞

0 (�), of variable q, � being an open set of R. Let ϒ be
the Hilbert space L2(�, dq), equipped with the scalar product

〈u, v〉 =
∫

�

u∗(q)v(q) dq ∀u, v ∈ ϒ, (15)

where u∗ is the complex conjugate of u. C∞
0 (�) is dense in ϒ . One has the following.

Theorem 1. Let Q and P be the operators defined as

Q,P : C∞
0 (�) ⊂ L2(�, dq) −→ L2(�, dq)

Qφ(q) = (−i)rh̄r−1νr

(
q

drφ(q)

dqr
+

r

2

dr−1φ(q)

dqr−1

)

Pφ(q) = −ih̄
dφ(q)

dq

(16)

∀φ ∈ C∞
0 (�). Then, Q and P are Hermitian and verify algebra (13).
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Proof. Let φ,ψ ∈ C∞
0 (�). From the definition of the scalar product (15), we get

〈Qφ,ψ〉 = irh̄r−1νr

∫
�

(
q

drφ∗(q)

dqr
+

r

2

dr−1φ∗(q)

dqr−1

)
ψ(q) dq

=
∫

�

φ∗(q)

[
(−i)rh̄r−1νr

(
q

drψ(q)

dqr
+

r

2

dr−1ψ(q)

dqr−1

)]
dq

= 〈φ,Qψ〉, (17)

where use has been made of integration by parts in the sense of distributions. We readily
obtain Q† = Q while P † = P is obvious. �

In the same vein, let us now consider the Hilbert space 	 = L2(�, dp) in the momentum
space {|p〉}. We have the following.

Theorem 2. Let Q and P be the operators defined as

Q,P : C∞
0 (�) ⊂ L2(�, dp) −→ L2(�, dp)

Qφ(p) = iνr

(
pr dφ(p)

dp
+

r

2
pr−1φ(p)

)
Pφ(p) = pφ(p)

(18)

∀φ ∈ C∞
0 (�). Then, Q and P are Hermitian and satisfy (13).

Proof. It proceeds in the same manner as for theorem 1. �
The case r = 0 in prescriptions (16), (18) and (13) yields the usual canonical commutation

relation as it should:

[Q,P ] = ih̄I. (19)

Postulates (13) and (19) reflect the fact that for macroscopic systems, the pairs P and Q
go over into ordinary dynamical variables p and q, and hence commute; their noncommutative
operator behaviour must be taken into account at the atomic level, where h̄ becomes significant.
Remark that ih̄I is a scalar, and therefore invariant under a unitary transformation (since it
will commute with any operator), while iνrP

r is a r-order differential operator which does
not commute with non-trivial operators. This feature further highlights the noncommutative
character of the geometry described by (13), as we will see in the following.

2.2. Functional analysis of the position operator

Here, we deal with the functional analysis of the operator Q.

2.2.1. Configuration space. In the configuration space, the domain of the adjoint, Q†, of the
position operator Q is formally defined as [24]

D(Q†) = {
v ∈ ϒ; ∃ψ ∈ ϒ/〈v,Qf 〉 = 〈ψ, f 〉∀f ∈ C∞

0 (�)
}
. (20)

In order to study the self-adjoint extension of Q, we have to refine the definition of D(Q†).
Let v ∈ D(Q†). By definition (20), there exists ψ ∈ ϒ such that 〈v,Qf 〉 = 〈ψ, f 〉 for all
f ∈ C∞

0 (�). Explicit computation gives

〈v,Qf 〉 = (−i)rh̄r−1νr

∫
�

v∗(q)

(
q

drf (q)

dqr
+

r

2

dr−1f (q)

dqr−1

)
dq

= (−i)rh̄r−1νr

∫
�

(
(−1)r

dr (qv∗(q))

dqr
+

r

2
(−1)r−1 dr−1(v∗(q))

dqr−1

)
f (q) dq

= 〈Qv, f 〉, (21)
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where we have used integration by parts and the conditions

dαv(q)

dqα
,

dβ(qv(q))

dqβ
∈ ϒ, (22)

for |α| � r − 2 and |β| � r − 1. Thus, 〈v,Qf 〉 = 〈Qv, f 〉 = 〈ψ, f 〉,∀f ∈ C∞
0 (�), which

implies Qv ∈ ϒ . It follows that

D(Q†) =
{
v ∈ L2(�, dq); dαv

dqα
,

dβ(qv)

dqβ
,

(
q

dr

dqr
+

r

2

dr−1

dqr−1

)
v ∈ L2(�, dq);

|α| � r − 2, |β| � r − 1

}
, (23)

which is the rigourous mathematical definition of the domain of Q† in the configuration space.
The eigenvalue problem for the position operator takes, in the configuration space, the

form of the r-order differential equation

(−i)rh̄r−1νr

(
q

dr

dqr
+

r

2

dr−1

dqr−1

)
φλ(q) = λφλ(q), (24)

which can be explicitly solved for particular values of r. For r = 1, we obtain the
eigenfunctions

φλ(q) = kq
(− 1

2 + iλ
ν1

)
. (25)

Taking � = R, φλ=i and φλ=−i belong neither to L2(�, dq) nor, in particular, to D(Q†).
Therefore, the operator Q† has empty deficiency subspaces [25]:

n±(Q) := ker(Q† ± iI ).D(Q†). (26)

As the deficiency indices in this case are (0, 0), we conclude that the position operator Q is
essentially self-adjoint.

2.2.2. Momentum space. In the momentum space, the domain of Q† is formally defined as

D(Q†) = {
v ∈ 	; ∃ψ ∈ 	/〈v,Qf 〉 = 〈ψ, f 〉∀f ∈ C∞

0 (�)
}
. (27)

In a suitable way, let v ∈ D(Q†). By definition, there exists ψ ∈ 	 such that 〈v,Qf 〉 = 〈ψ, f 〉
for all f ∈ C∞

0 (�). Using integration by parts and the condition prv ∈ 	, we deduce

〈v,Qf 〉 =
∫

�

v∗(p)

[
iνr

(
pr df (p)

dp
+

r

2
pr−1f (p)

)]
dp

= iνr

∫
�

(
−d(prv∗(p))

dp
+

r

2
pr−1v∗(p)

)
f (p) dp

= 〈Qv, f 〉. (28)

Thus, 〈v,Qf 〉 = 〈Qv, f 〉 = 〈ψ, f 〉∀f ∈ C∞
0 (�) which implies that Qv ∈ 	. Hence,

D(Q†) =
{
v ∈ L2(�, dp);prv,

(
pr d

dp
+

r

2
pr−1

)
v ∈ L2(�, dp)

}
. (29)

The eigenvalue problem for the position operator, in the momentum space, is given by a
first-order differential equation

iνr

(
pr d

dp
+

r

2
pr−1

)
ψλ(p) = λψλ(p), (30)
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which can be immediately solved to obtain eigenfunctions

ψλ(p) =




c

pr/2
exp

(
− iλ

νr(1 − r)

1

pr−1

)
if r �= 1

cp
−( 1

2 − iλ
ν1

) if r = 1.

(31)

We note that if � = ]0, +∞[, there is no eigenvector associated with each of the values
λ = ±i. Hence, the operator Q is essentially self-adjoint.

Let us note that, with r = 1, the position operator Q (16) defined in the configuration
space is exactly the same operator as Q in the momentum space (18), except for a sign and
the name of the argument of the wavefunction. Remark also that the choice � = R in
the subsubsection 2.2.1 and � = R

+\{0} in the subsubsection 2.2.2 is not intrinsic to the
position operator Q, but because P should be simultaneously essentially self-adjoint. For
instance, in the configuration space, the indicial equation for P leads to the solutions
φ±i (q) = k exp(∓q/h̄) which do not belong to L2(R, dq), proving that P is also essentially
self-adjoint, as it should.

From now on, we assume � =]0, +∞[.

2.3. Relevant properties

As a straightforward application of (13), we have the following properties.

Proposition 1. ∀n � 1,∀t ∈ R:

(i) [Qn, P ] = iνr

n−1∑
j=0

QjP rQn−j−1

(ii) [Q,P n] = inνrP
r+n−1

(iii) [Q, exp(itP )] = −νr tP
r exp(itP )

(iv) [Q,P −1] = −iνrP
r−2

(v) [exp(itQ), P ] = iνr

+∞∑
j=1

j−1∑
k=0

(it)j

j !
QkP rQj−k−1

(vi) [Q−1, P ] = −iνrQ
−1P rQ−1.

Theorem 3 (Heisenberg uncertainty relation). Let �P,�Q be the uncertainties in Q and P,
respectively, 〈A〉ψ be the mean value of an operator A in the state |ψ〉. Then

�P�Q � νr |〈P r〉ψ |/2. (32)

Proof. Let us set |φ〉 = (Q′ + iλrP
′)|ψ〉, where

λr = 〈P r〉ψ
2(�P )2

P ′ = P − 〈P 〉ψ Q′ = Q − 〈Q〉ψ. (33)

Then we get

〈φ|φ〉 = 〈ψ |(Q′ − iλrP
′)(Q′ + iλrP

′)|ψ〉
= 〈ψ |(Q′)2|ψ〉 + iλr〈ψ |[Q′, P ′]|ψ〉 + λ2

r 〈ψ |(P ′)2|ψ〉, (34)

or equivalently

〈φ|φ〉 = 〈(Q′)2〉ψ + iλr〈[Q′, P ′]〉ψ + λ2
r 〈(P ′)2〉ψ.
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Since [Q′, P ′] = [Q,P ], one deduces

〈φ|φ〉 = 〈(Q′)2〉ψ − λrνr〈P r〉ψ + λ2
r 〈(P ′)2〉ψ. (35)

Hence the rhs expression is positive, which implies (32). �

The normalized eigenstates |ψ〉 (〈ψ |ψ〉 = 1) for the operators Q + iλrP are minimum
uncertainty states for the operators Q and P. One can readily check that they verify the relation

(Q′ + iλrP
′)|ψ〉 = 0. (36)

In momentum representation, this takes the form of the differential equation[
iνr

(
pr d

dp
+

r

2
pr−1

)
− 〈Q〉 + iλr(p − 〈P 〉)

]
|ψ〉 = 0, (37)

which can be solved to obtain

(i) if r /∈ {1, 2}

ψ(p) = crp
−r/2 exp

[
λr

νr(r − 2)
p−r+2 − 1

r − 1

(
λr

νr

〈P 〉 +
1

iνr

〈Q〉
)

p−r+1

]
, (38)

with

cr =
[

1

r − 1

+∞∑
k=0

(αr)
k

k!

(
1

βr

) k(r−2)

r−1 +1




(
k(r − 2)

r − 1
+ 1

)]−1/2

αr = 2λr

νr(r − 2)

βr = 2λr〈P 〉
νr(r − 1)

.

(39)

(ii) if r = 1

ψ(p) = c1p
− 1

2 +(
λ1
ν1

〈P 〉+ 1
iν1

〈Q〉) exp

(
−λ1

ν1
p

)
, (40)

with

c1 =
[(

ν1

2λ1

) 2λ1〈P 〉
ν1




(
2λ1〈P 〉

ν1

)]−1/2

. (41)

(iii) if r = 2

ψ(p) = c2p
−(1+ λ2

ν2
) exp

[
−

(
λ2

ν2
〈P 〉 +

1

iν2
〈Q〉

)
p−1

]
, (42)

with

c2 =
[(

ν2

2λ2〈P 〉
) 2λ2

ν2
+1




(
2λ2

ν2
+ 1

)]−1/2

. (43)

It is noteworthy to point out some remarkable features of theses states. As a matter of
fact, consider for instance r = 2. Then the uncertainty relation (32) implies �Q � ν2�P/2;
when �P is large, �Q is also large.
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3. Application to the harmonic oscillator

In this section, we deal with the application of the generalized HA (13) to the harmonic
oscillator. Ehrenfest’s theorem is stated. Then, we give an explicit expression of the
one-dimensional Hamiltonian of the harmonic oscillator in momentum space and solve the
corresponding eigenvalue problem.

The generalized Hamiltonian of the quantum harmonic oscillator reads

H = P 2

2m
+

mω2

2
Q2, (44)

which can be used together with (13) to state the following.

Theorem 4 (Ehrenfest’s theorem). Given algebra (13) and the Hamiltonian (44), the mean
value temporal evolution of Q and P satisfies the equations

d

dt
〈Q〉(t) = νr

h̄m
〈P r+1〉

d

dt
〈P 〉(t) = −ω2νrm

2h̄
〈P rQ + QP r〉.

(45)

Proof. Given an observable A, the time evolution of its mean value with respect to the state
|ψ(t)〉 becomes [26]

d

dt
〈A〉(t) = 1

ih̄
〈[A,H]〉 +

〈
∂A

∂t

〉
. (46)

Applying this definition and taking into account the fact that the operators Q and P do not
explicitly depend on t, one immediately gets

d

dt
〈Q〉(t) = 1

ih̄
〈[Q,H]〉 d

dt
〈P 〉(t) = 1

ih̄
〈[P,H]〉. (47)

By virtue of proposition 1, (45) holds. �

Following this theorem, the quantum analogue of Newton second law for expectation
values leads to a nonlinear force F ∝ (P rQ + QP r) which remains to be understood [26]. It
turns out that this nonlinearity for a parameter r greatly affects the dynamics and generates
constraints on the integrability of the wavefunction in the carrier Hilbert space.

In the following, we restrict our analysis to the case of the momentum representation.
The Hamiltonian then reads

H = h̄ω

2

{
−�2

r

[
p2r d2

dp2
+ 2rp2r−1 d

dp
+

r

4
(3r − 2)p2r−2

]
+ ξ 2p2

}
, (48)

where �r = νr(mω/h̄)1/2 and ξ = (1/mh̄ω)1/2.
We note that the domain of the definition for the Sturm–Liouville operator (48) is defined

as [24]

D(H) = {φ ∈ L2(]0, +∞[);φ, p2rφ′ ∈ ACloc(]0, +∞[\{�r/ξ}),{
−�2

r

[
p2r d2

dp2
+ 2rp2r−1 d

dp
+

r

4
(3r − 2)p2r−2

]
+ ξ 2p2

}
φ ∈ L2(]0, +∞[dp)

}
,

(49)

where ACloc(�) denotes the set of all absolutely continuous functions on �, � being an open
set.
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The case r = 1 leads to

H = h̄ω

2

(
−�2

1p
2 d2

dp2
− 2�2

1p
d

dp
− �2

1

4
+ ξ 2p2

)
, (50)

where �1 = ν1(mω/h̄)1/2 and ξ = (mh̄ω)−1/2. We consider the appropriate space of
square integrable functions 	 ≡ L2(�, dp), where � =]0, +∞[. Since we are interested
in eigenfunctions which are physically acceptable, we require these functions to be, at least,
square integrable and continuous.

The reduced Hamiltonian

H1 := H
h̄ω

= 1

2

(
−�2

1p
2 d2

dp2
− 2�2

1p
d

dp
− �2

1

4
+ ξ 2p2

)
(51)

leads to the eigenvalue problem in the usual form H1φ(p) = εφ(p), namely,{
d2

dp2
+

2

p

d

dp
+

[
1

4p2
+

2ε

�2
1p

2
+

(
iξ

�1

)2
]}

φ(p) = 0. (52)

A general solution of (52) is given by [27]

φ(p) = 1√
p
Zµ

(
iξ

�1
p

)
, (53)

where µ2 = −2ε
/
�2

1,Zµ being an arbitrary cylinder function. Taking into account the
singularities at the origin (p = 0) and relevant physical boundary conditions, two cases have
to be considered.

(i) ε � 0. We get the solution

φ1(p) =




1√
p

H(1)
µ (i)J−µ

(
iξ

�1
p

)
if p ∈

]
0,

�1

ξ

]
1√
p

J−µ(i)H(1)
µ

(
iξ

�1
p

)
if p ∈

[
�1

ξ
, +∞

[ (54)

with µ = i (2ε)1/2 /�1. However, this function fails to be square integrable. Indeed, the
behaviour for small values of p is described by the asymptotic formula

1√
p

J−µ

(
iξ

�1
p

)
� 1√

p

( iξ
2�1

p
)−µ


(1 − µ)
, (55)

which is not square integrable in the neighbourhood of the origin. Therefore, (54) is not
a suitable solution.

(ii) ε < 0. The eigenfunction is then defined by

φ2(p) =




1√
p

H(1)
µ (i)Jµ

(
iξ

�1
p

)
if p ∈

]
0,

�1

ξ

]
1√
p

Jµ(i)H(1)
µ

(
iξ

�1
p

)
if p ∈

[
�1

ξ
, +∞

[
,

(56)

where µ = (2|ε|)1/2/�1. Using the formulae [28]

Jµ

(
iξ

�1
p

)
= exp

( iµπ

2

)
Iµ

(
ξ

�1
p

)
(57)

and

H(1)
µ

(
iξ

�1
p

)
= 2

iπ
exp

(
− iµπ

2

)
Kµ

(
ξ

�1
p

)
, (58)
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where Iµ and Kµ are the modified Bessel function of the first kind and Macdonald’s
function, respectively. Examining the asymptotic behaviour

Iµ(p) � pµ

2µ
(µ + 1)
(59)

for small values of p,

Kµ(p) �
√

π

2p
exp(−p) (60)

for large values of p, one can readily check that φ2 is square integrable in �. Therefore,
bound states are obtained and the eigenfunctions are given by (56).

Let us now consider the case r = 2. The Hamiltonian takes the form

H2 = 1

2

[
−�2

2

(
p4 d2

dp2
+ 4p3 d

dp
+ 2p2

)
+ ξ 2p2

]
. (61)

Following step by step the above analysis for r = 1, we get the r = 2 bound states as follows:

φ(p) =




p−3/2H
(1)
µ′

(
iξ

√−2ε

�2p

)
Jµ′

(
iξ 2

√−2ε

�2
2

)
if p ∈

]
0,

�2

ξ

]

p−3/2Jµ′

(
iξ

√−2ε

�2p

)
H

(1)
µ′

(
iξ 2

√−2ε

�2
2

)
if p ∈

[
�2

ξ
, +∞

[
,

(62)

where µ′ = [(
4ξ 2 + �2

2

)/
4�2

2

]1/2
.

Larger r-values could be considered, but they no longer lead to differential equations
giving solutions in terms of known special functions. Hence, in so far as we are dealing with
exact analytical solutions, we do restrict our analysis to the cases r � 2.

4. Generalization to n dimensions

We now turn to extending the above formalism to n spatial dimensions in the momentum
representation.

A natural generalization of algebra (13) is given by

[Qi, Pj ] = iνrδij‖ �P ‖r i, j = 1, 2, . . . , n, (63)

where

‖ �P ‖2 =
n∑

i=1

P 2
i .

Such a generalization supposes that n is odd and the operators Qi and Pj act on functions
defined in a domain � = (R+\{0})n. The requirement

[Pi, Pj ] = 0 (64)

allows us to straightforwardly generalize the above-provided momentum representation to n
dimensions as follows:

Piψ(p) = piψ(p)

Qiψ(p) = iνr

(
‖ �P ‖r∂pi

+
r

2
‖ �P ‖r−2pi

)
ψ(p).

(65)

This fixes the commutation relations among the position operators. Explicitly, we have

[Qi,Qj ] = irνr‖ �P ‖r−2(PiQj − PjQi) (66)

logically leading to a ‘noncommutative geometric’ generalization of the position space [3].
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The operators Qi and Pi are symmetric on the domain C∞
0 (�) with respect to the scalar

product

〈ψ, φ〉 =
∫

�

ψ∗(p)φ(p) dnp. (67)

The functional analysis of the operators defined in (65) is analogous to the one-dimensional
situation, and can be therefore discussed following step by step the approach used in
section 2.

It is worth noting that the commutation relations (63), (64), (66) do not break the rotational
symmetry. In fact, the generators of rotations for the n-dimensional spaces can be expressed
in terms of the position and momentum as

Lij = h̄

νr‖ �P ‖r
(QiPj − QjPi) (68)

which, in three dimensions, reduce to

Lk := h̄

νr‖ �P ‖r
εijkQiPj , (69)

generalizing the usual definition of the orbital angular momentum. Note that 1/‖ �P ‖r

is an unproblematic bounded operator acting on the momentum space wavefunction as
multiplication 1/‖�p‖r . The generators of the rotations act on momentum wavefunctions
as

Lijψ(p) = −ih̄(Pi∂j − Pj∂i)ψ(p), (70)

where

[Pi, Ljk] = ih̄(δkiPj − δijPk) (71)

[Lij , Lkl] = ih̄(δjkLli + δjlLik − δikLlj − δilLjk) (72)

[Qi,Ljk] = ih̄(δikQj − δijQk). (73)

Results (70), (71), (72) and (73) exactly coincide with those given in [3] with a different
deformed Heisenberg algebra.

Using (66) and (70), we obtain

[Qi,Qj ] = − irν2
r

h̄
‖ �P ‖2r−2Lij (74)

characteristic of a noncommutative geometry. Besides, the following uncertainty relations
hold:

�Qi�Pj � νr

2
|〈‖ �P ‖r〉|δij (75)

�Qi�Qj � rν2
r

2h̄
|〈‖ �P ‖2r−2Lij 〉|. (76)

In three dimensions, the previous commutation relations can be simplified into the form

[Pi, Lj ] = ih̄εijkPk (77)

[Qi,Lj ] = ih̄εijkQk (78)

[Li, Lj ] = ih̄εijkLk, (79)

where

Lkψ(p) = −ih̄εijkPi∂pj
ψ(p) (80)

refers to the action of the angular momentum operator on wavefunctions.
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5. Concluding remarks

This work was mainly focused on the generalized HA generated by a deformation of the
Poisson bracket. The obtained results well yield those of usual quantum mechanics for
the deformation parameter r = 0. The representation theory can be handled in both the
configuration and momentum spaces. As an illustration, for the deforming parameter r � 2,
we succeeded in getting well-behaved solutions in the momentum space for the harmonic
oscillator. The Hamiltonian eigenfunctions are expressed in terms of cylinder functions.

As a matter of qualitative analysis, the generalized commutation relations (13) can be
rewritten for unitless operators Q and P in the form

[Q,P ] = iP r (81)

and the Hamiltonian of the harmonic oscillator in this case reduces to

H = 1
2 (P 2 + Q2). (82)

Evidently, in the case r = 1, in the momentum representation for instance, the operators

Q = i

(
p

d

dp
+

1

2

)
P = p (83)

are unitary equivalent to

Q̃ = i
d

dp
P̃ = exp(p) (84)

with the unitary operator explicitly given by

U : L2(R2) −→ L2(R2, C
2)

Uφ(p) = exp(p/2)(φ(exp(p));φ(− exp(p))) ∀φ ∈ L2(R2).
(85)

By analogy, the Hamiltonian (82) is unitary equivalent to the Hamiltonian

H̃ = 1

2

(
− d2

dp2
+ exp(2p)

)
. (86)

Finally, let us mention that the eigenvalue problem for the oscillator (44) in the configuration
space reveals cumbersome measure problem which occurs when one deals with the square
integrability of the eigenfunctions. A thorough analysis of these aspects, including the
investigation of related relevant properties as well as the physical regime in which the deformed
relations could be approximately the canonical relations, is in progress and will be at the core
of a forthcoming paper.
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